skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Łącki, Jakub"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 5, 2026
  2. We study the problem of dynamically maintaining the connected components of an undirected graph subject to edge insertions and deletions. We give the first parallel algorithm for the problem that is work-efficient, supports batches of updates, runs in polylogarithmic depth, and uses only linear total space. The existing algorithms for the problem either use super-linear space, do not come with strong theoretical bounds, or are not parallel. On the empirical side, we provide the first implementation of the cluster forest algorithm, the first linear-space and polylogarithmic update time algorithm for dynamic connectivity. Experimentally, we find that our algorithm uses up to 19.7× less space and is up to 6.2× faster than the level-set algorithm of Holm, de Lichten-berg, and Thorup, arguably the most widely-implemented dynamic connectivity algorithm with strong theoretical guarantees. 
    more » « less
  3. We introduce the ParClusterers Benchmark Suite (PCBS)---a collection of highly scalable parallel graph clustering algorithms and benchmarking tools that streamline comparing different graph clustering algorithms and implementations. The benchmark includes clustering algorithms that target a wide range of modern clustering use cases, including community detection, classification, and dense subgraph mining. The benchmark toolkit makes it easy to run and evaluate multiple instances of different clustering algorithms with respect to both the running time and quality. We evaluate the PCBS algorithms empirically and find that they deliver both the state of the art quality and the running time. In terms of the running time, they are on average over 4x faster than the fastest library we compared to. In terms of quality, the correlation clustering algorithm [Shi et al., VLDB'21] optimizing for the LambdaCC objective, which does not have a direct counterpart in other libraries, delivers the highest quality in the majority of datasets that we used. 
    more » « less
  4. A fundamental building block in any graph algorithm is agraph container -- a data structure used to represent the graph. Ideally, a graph container enables efficient access to the underlying graph, has low space usage, and supports updating the graph efficiently. In this paper, we conduct an extensive empirical evaluation of graph containers designed to support running algorithms on large graphs. To our knowledge, this is the firstapples-to-applescomparison of graph containers rather than overall systems, which include confounding factors such as differences in algorithm implementations and infrastructure. We measure the running time of 10 highly-optimized algorithms across over 20 different containers and 10 graphs. Somewhat surprisingly, we find that the average algorithm running time does not differ much across containers, especially those that support dynamic updates. Specifically, a simple container based on an off-the-shelf B-tree is only 1.22× slower on average than a highly optimized static one. Moreover, we observe that simplifying a graph-container Application Programming Interface (API) to only a few simple functions incurs a mere 1.16× slowdown compared to a complete API. Finally, we also measure batch-insert throughput in dynamic-graph containers for a full picture of their performance. To perform the benchmarks, we introduce BYO, a unified framework that standardizes evaluations of graph-algorithm performance across different graph containers. BYO extends the Graph Based Benchmark Suite (Dhulipala et al. 18), a state-of-the-art graph algorithm benchmark, to easily plug into different dynamic graph containers and enable fair comparisons between them on a large suite of graph algorithms. While several graph algorithm benchmarks have been developed to date, to the best of our knowledge, BYO is the first system designed to benchmark graph containers. 
    more » « less
  5. Alistarh, Dan (Ed.)
    The SetCover problem has been extensively studied in many different models of computation, including parallel and distributed settings. From an approximation point of view, there are two standard guarantees: an O(log Δ)-approximation (where Δ is the maximum set size) and an O(f)-approximation (where f is the maximum number of sets containing any given element). In this paper, we introduce a new, surprisingly simple, model-independent approach to solving SetCover in unweighted graphs. We obtain multiple improved algorithms in the MPC and CRCW PRAM models. First, in the MPC model with sublinear space per machine, our algorithms can compute an O(f) approximation to SetCover in Ô(√{log Δ} + log f) rounds and a O(log Δ) approximation in O(log^{3/2} n) rounds. Moreover, in the PRAM model, we give a O(f) approximate algorithm using linear work and O(log n) depth. All these bounds improve the existing round complexity/depth bounds by a log^{Ω(1)} n factor. Moreover, our approach leads to many other new algorithms, including improved algorithms for the HypergraphMatching problem in the MPC model, as well as simpler SetCover algorithms that match the existing bounds. 
    more » « less
  6. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied method for hierarchical clustering. Recent applications to massive datasets have driven significant interest in near-linear-time and efficient parallel algorithms for average linkage HAC. We provide hardness results that rule out such algorithms. On the sequential side, we establish a runtime lower bound of n^{3/2-ε} on n node graphs for sequential combinatorial algorithms under standard fine-grained complexity assumptions. This essentially matches the best-known running time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the possibility side, we demonstrate that average linkage HAC can be efficiently parallelized (i.e., it is in NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy is small. 
    more » « less